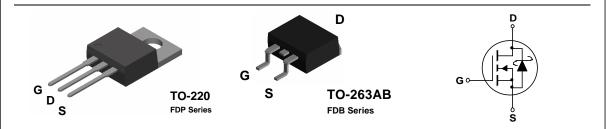


FDP7030BLS / FDB7030BLS


30V N-Channel PowerTrench^o SyncFET[™]

General Description

This MOSFET is designed to replace a single MOSFET and parallel Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDP7030BLS includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology. The performance of the FDP7030BLS as the low-side switch in a synchronous rectifier is indistinguishable from the performance of the FDP7030BL in parallel with a Schottky diode.

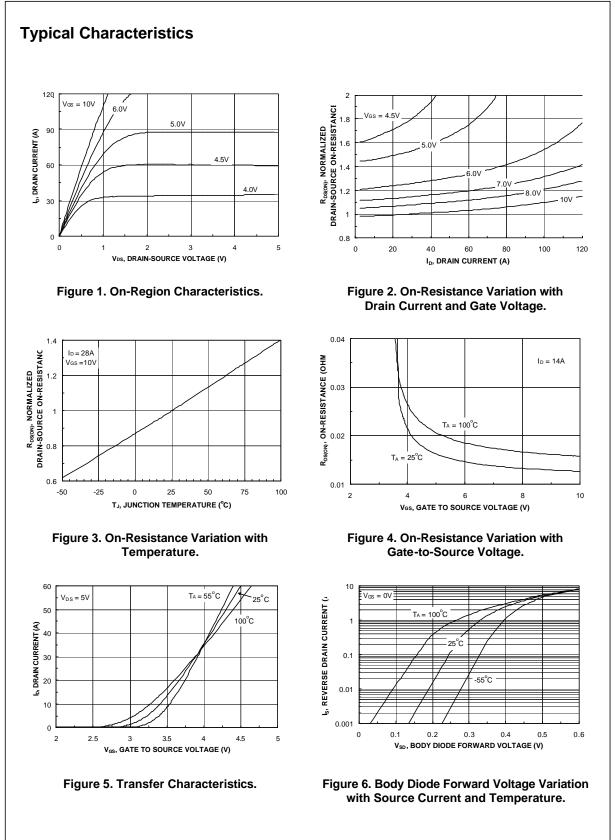
Features

- 56 A, 30 V. $R_{DS(ON)} = 10.5 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 16.5 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Includes SyncFET Schottky body diode
- Low gate charge (15nC typical)
- High performance trench technology for extremely low R_{DS(ON)} and fast switching
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

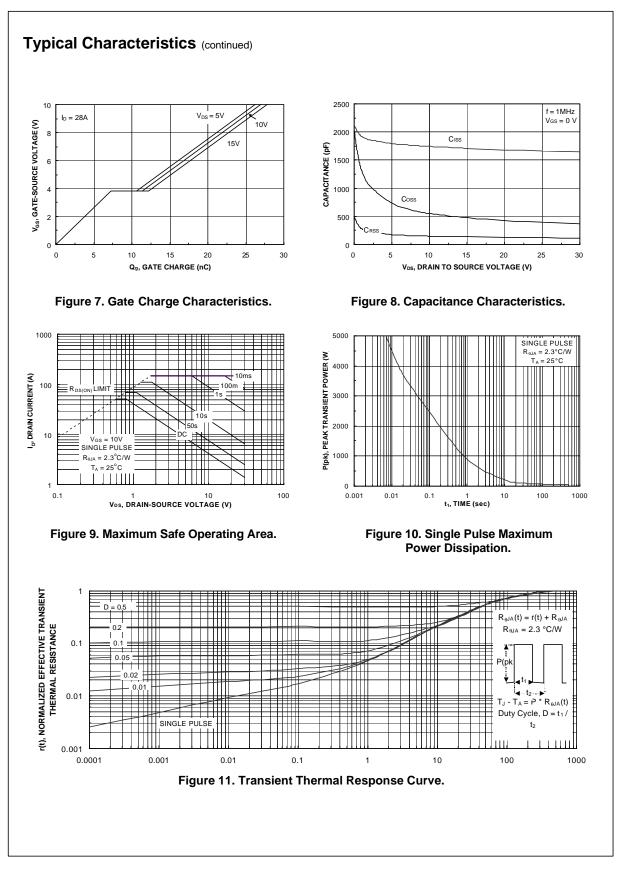
Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Sourc	e Voltage		30	V	
V _{GSS}	Gate-Source Voltage			±20	V	
I _D	Drain Currer	nt – Continuous	(Note 1)	56		
		 Pulsed 	(Note 1)	160	A	
P _D	Total Power Dissipation @ $T_c = 25^{\circ}C$			65	W	
			0.43	W/°C		
T _J , T _{STG}	Operating a	nd Storage Junction Te	emperature Range	-65 to +100	°C	
TL		ad temperature for sol se for 5 seconds	dering purposes,	275	°C	
Therma	I Charact	teristics				
R _{eJC}	Thermal Re	sistance, Junction-to-	Case	2.3	°C/W	
R _{eja}	Thermal Resistance, Junction-to-Ambient			62.5 °(
Packag	e Marking	g and Orderin	g Information		Letter and the second s	
Device Marking		Device	Reel Size	Tape width	Quantity	
FDB7030BLS		FDB7030BLS	13"	24mm	800 units	

FDB7030BLSFDB7030BLS13"24mm800 unitsFDP7030BLSFDP7030BLSTuben/a45


© 2001 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{D} = 1 mA$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_{D} = 10$ mA, Referenced to 25°C		22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			500	μA
IGSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -20 V$ $V_{DS} = 0 V$			-100	nA
On Cha	acteristics (Note 2)		•	•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 1 \text{ mA}$	1	2.3	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 1$ mA, Referenced to 25°C		-4.4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			8.6 13.2 12.4	10.5 16.5 16.5	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	50			Α
g _{FS}	Forward Transconductance	$V_{DS} = 5 V$, $I_{D} = 28 A$		47		S
Dynami	c Characteristics					<u> </u>
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		1708		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		474		pF
<u>^</u>		-		134		pF
Crss	Reverse Transfer Capacitance			134		рг
	•			134		рг
Switchir		V _{DS} = 15 V, I _D = 1 A,		134	21	ns
	ng Characteristics (Note 2)	$V_{DS} = 15 \text{ V}, \qquad I_D = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$			21 16	
Switchir t _{d(on)} t _r	Turn-On Delay Time	50 , 5 ,		11		ns
Switchir t _{d(on)} t _r t _d (off)	G Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time	50 , 5 ,		11 8	16	ns ns
Switchir t _{d(on)} t _r t _{d(off}) t _f	G Characteristics (Note 2) Tum–On Delay Time Tum–On Rise Time Tum–Off Delay Time	50 , 5 ,		11 8 30	16 48	ns ns ns
	IDENTIFY and Set UP Characteristics (Note 2) Tum–On Delay Time Tum–On Rise Time Tum–Off Delay Time Tum–Off Fall Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		11 8 30 16	16 48 29	ns ns ns ns
Switchir t _{d(an)} tr t_d(off) tf Qg Qgs	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 15 \text{ V}, \qquad I_D = 28 \text{ A}$		11 8 30 16 15	16 48 29	ns ns ns ns nC
Switchin t _{d(on)} tr d _{d(off}) tf Qg Qgs Qgd	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 15 \text{ V}, \qquad I_D = 28 \text{ A}$ $V_{GS} = 5 \text{ V}$		11 8 30 16 15 7	16 48 29	ns ns ns nC nC
Switchin t _{d(on)} tr d _{d(off}) tf Qg Qgs Qgd	g Characteristics (Note 2) Tum-On Delay Time Tum-On Rise Time Tum-Off Delay Time Tum-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 15 \text{ V}, \qquad I_D = 28 \text{ A}$ $V_{GS} = 5 \text{ V}$ and Maximum Ratings		11 8 30 16 15 7	16 48 29	ns ns ns nC nC
Switchir t _{d(on)} tr t_d(off) tf Qg Qgs Qgd Drain–S	Characteristics (Note 2) Tum-On Delay Time Tum-On Rise Time Tum-Off Delay Time Tum-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics a Maximum Continuous Drain-Source Drain-Source Diode Forward	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 15 \text{ V}, \qquad I_D = 28 \text{ A}$ $V_{GS} = 5 \text{ V}$ and Maximum Ratings Diode Forward Current $V_{GS} = 0 \text{ V}, I_S = 3.5 \text{ A} (\text{Note 1})$		11 8 30 16 15 7 5	16 48 29 21	ns ns ns nC nC nC
Switchir $t_{d(on)}$ t_r $t_d(off)$ t_f Q_g Q_{gs} Q_{gd} Drain–S l_s	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics at Maximum Continuous Drain-Source	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{DS} = 15 \text{ V}, \qquad I_D = 28 \text{ A}$ $V_{GS} = 5 \text{ V}$ and Maximum Ratings Diode Forward Current		11 8 30 16 15 7 5	16 48 29 21 3.5	ns ns ns nC nC nC

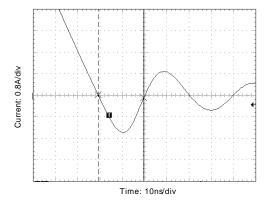
Notes:


Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%
 See "SyncFET Schottky body diode characteristics" below.

FDP7030BLS/FDB7030BLS

FDP7030BLS/FDB7030BLS

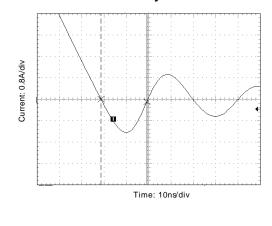
FDP7030BLS Rev B(W)

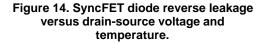

FDP7030BLS/FDB7030BLS

FDP7030BLS Rev B(W)

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics


Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 FDP7030BLS.


Figure 12. FDP7030BLS SyncFET body diode reverse recovery characteristic.

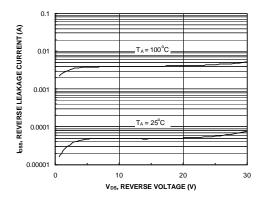
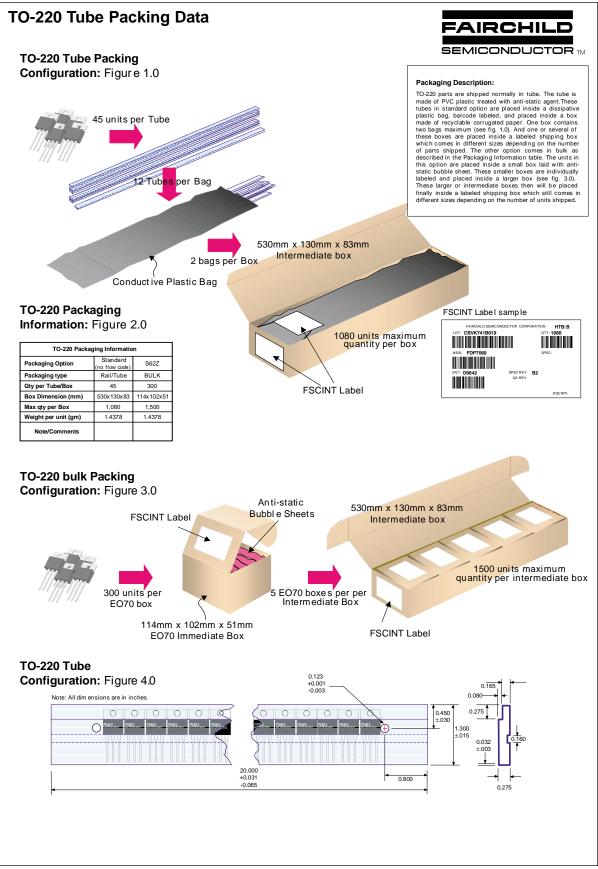
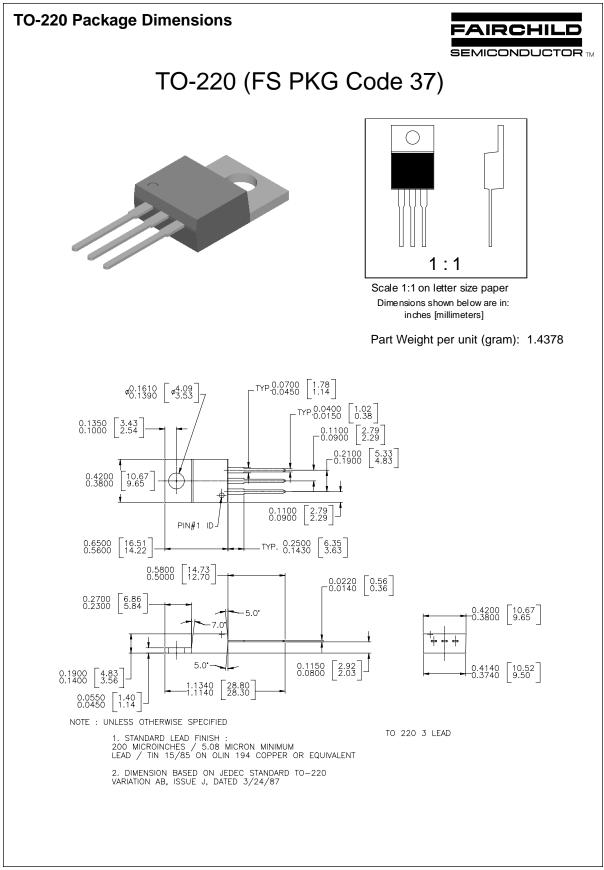
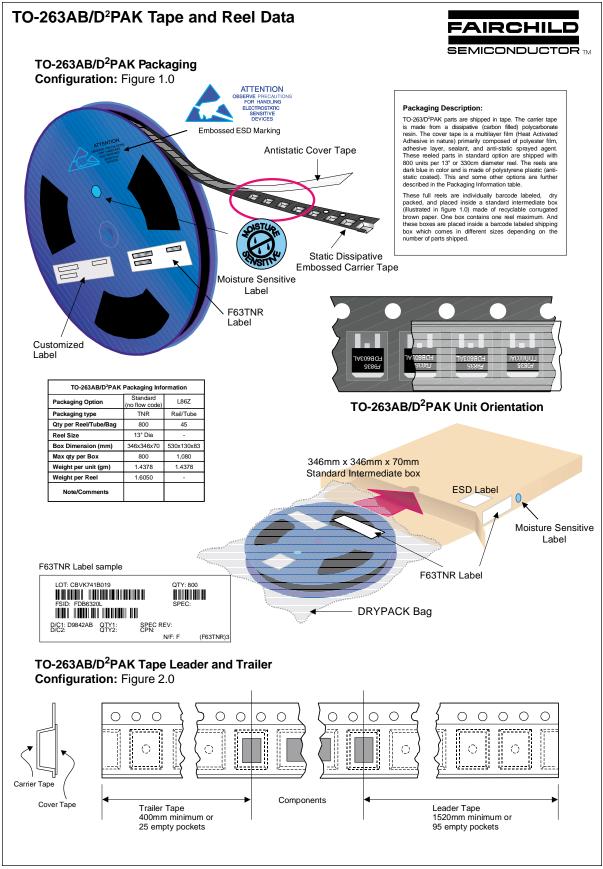

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDP7030BL).

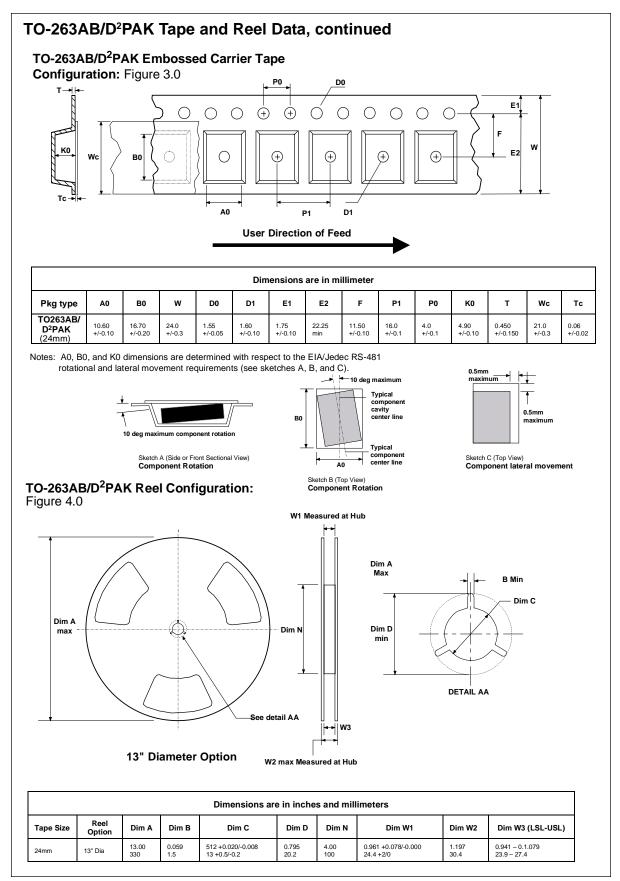
Figure 13. Non-SyncFET (FDP7030BL) body diode reverse recovery characteristic.

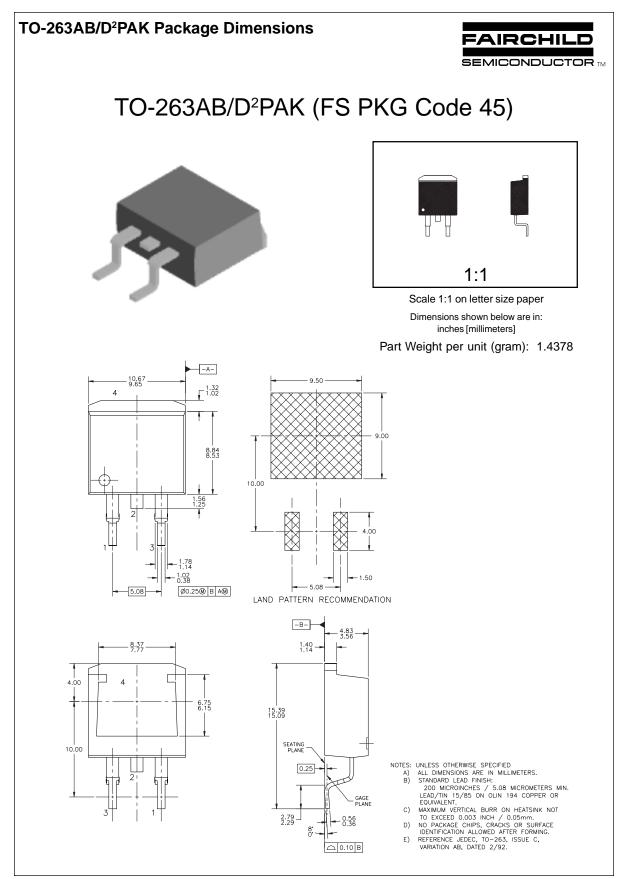

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.





FDP7030BLS/FDB7030BLS


FDP7030BLS Rev B(W)



©2001 Fairchild Semiconductor Corpooration

©2000 Fairchild Semiconductor International

August 1998, Rev. A

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST[®] ACEx™ **OPTOPLANAR™** SuperSOT[™]-3 FASTr™ PACMAN™ SuperSOT[™]-6 Bottomless™ POP™ CoolFET™ FRFET™ SuperSOT[™]-8 CROSSVOLT™ SyncFET™ GlobalOptoisolator[™] PowerTrench[®] GTO™ TinyLogic™ DenseTrench™ QFET™ UHC™ HiSeC™ QS™ DOME™ **EcoSPARK**[™] **ISOPLANAR™** QT Optoelectronics[™] UltraFET[®] VCX™ E²CMOS[™] LittleFET™ Quiet Series[™] SILENT SWITCHER® EnSigna™ MicroFET™ FACT™ MICROWIRE™ SMART START™ Stealth™ OPTOLOGIC™ FACT Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		
	•	Rev. H2		